Лекция 11. Надёжность и отказоустойчивость: репликация, балансировка
Цель лекции: понять, как проектировать надёжные smart‑платформы (edge/on‑premise/cloud): какие отказовые модели бывают, как применять репликацию и балансировку, как оценивать доступность (availability) и строить практики HA/DR, чтобы система продолжала работу при сбоях компонентов.
1. Надёжность vs отказоустойчивость vs доступность
Надёжность (reliability) — способность системы работать без отказов в течение времени.
Отказоустойчивость (fault tolerance) — способность продолжать работу при отказах частей.
Доступность (availability) — доля времени, когда сервис доступен пользователю.

Важно: система может иметь “частые сбои, но быстро восстанавливаться” — тогда reliability низкая, но availability может оставаться высокой.

Ключевые метрики эксплуатации:
• MTBF — среднее время между отказами
• MTTR — среднее время восстановления
• Availability ≈ MTBF / (MTBF + MTTR)

Например, если MTBF=1000 ч, MTTR=1 ч → availability≈1000/1001≈99.90%.
2. Классы отказов в smart‑инфраструктуре
Типовые отказы:
• отказ железа (сервер, диск, сеть)
• отказ процесса (crash, утечки памяти)
• деградация производительности (перегрузка, saturation)
• сетевые проблемы (packet loss, partition)
• ошибки конфигурации/релизов (human factor)
• отказ внешних зависимостей (DNS, IAM, платежи, API)

Отказы бывают:
• fail‑stop (процесс просто остановился)
• fail‑slow (работает, но медленно — опаснее для SLA)
• Byzantine (непредсказуемое/злонамеренное поведение — редко учитывается в обычной эксплуатации).
3. Репликация: зачем и какие виды
Репликация — наличие нескольких экземпляров компонента (сервиса/БД/брокера), чтобы отказ одного не приводил к остановке системы.

3.1 Репликация сервисов (stateless):
• несколько копий API/обработчиков
• состояние хранится во внешней БД/кэше
Плюс: легко масштабировать и балансировать.

3.2 Репликация stateful компонентов:
• базы данных, брокеры сообщений, хранилища
• требуется согласование данных и лидер‑элекция

Главный компромисс: сильная согласованность vs доступность vs задержка (см. CAP).
3.3 Синхронная и асинхронная репликация
Синхронная репликация:
• запись считается успешной, когда подтверждена несколькими репликами
• выше надёжность данных, но выше задержка

Асинхронная репликация:
• запись подтверждается лидером сразу, реплики догоняют позже
• ниже задержка, но возможна потеря последних записей при аварии лидера

Выбор зависит от требований: “можно ли потерять последние секунды данных?”
3.4 Консенсус и лидер‑элекция (упрощённо)
Для stateful кластеров часто нужен механизм согласования:
• лидер принимает изменения, фолловеры реплицируют
• при отказе лидера выбирается новый

Примеры (на уровне концепции): Raft/Paxos‑подобные подходы для управления метаданными/кворумом.
Инженерно важно понимать:
• что такое кворум (majority)
• какие операции требуют кворума
• что происходит при network partition.
4. Балансировка нагрузки: ключ к доступности и масштабу
Балансировка распределяет запросы между экземплярами сервиса.

4.1 Типы балансировщиков:
• L4 (TCP/UDP) — быстрый, не понимает HTTP
• L7 (HTTP) — понимает URL/headers, может делать маршрутизацию

4.2 Алгоритмы:
• Round Robin
• Least Connections
• Weighted (с весами)
• Consistent hashing (для кэша/шардирования)

4.3 Health checks:
• liveness — “процесс жив”
• readiness — “готов обслуживать”
Балансировщик должен исключать нездоровые инстансы.
4.4 Sticky sessions и state
Sticky sessions (“прилипание” к инстансу) иногда упрощают работу со state, но ухудшают равномерность и усложняют восстановление.

Лучше проектировать сервисы как stateless, а state держать в специализированных хранилищах (БД, кэш, object storage).
5. Устойчивость к перегрузке: важнее, чем кажется
Перегрузка может “похожеть” на отказ: timeouts, рост очередей, каскадные сбои.

Практики:
• rate limiting (ограничение запросов)
• backpressure (замедление источника при росте очередей)
• circuit breaker (отключение зависимостей при деградации)
• bulkhead (изоляция ресурсов по группам)
• graceful degradation (упрощённый режим)

Смысл: лучше обслужить меньше, но стабильно, чем “упасть всем”.
6. Брокеры и очереди: гарантии доставки
В smart‑системах брокер сообщений часто центральный компонент.

Ключевые параметры:
• at‑most‑once / at‑least‑once / exactly‑once (семантика доставки)
• ретраи и дедупликация
• retention и durability
• consumer lag и масштабирование потребителей

Отказоустойчивость брокера достигается кластеризацией, репликацией журналов и правильным QoS.
7. Базы данных: реплики, шардирование и бэкапы
Для БД важно различать:
• репликацию (для доступности и чтения)
• шардирование (для масштаба данных и записи)
• бэкап/restore (для восстановления после ошибок/удалений)

“Репликация не заменяет бэкап”: если данные удалены/испорчены логически, реплики тоже это повторят.
8. HA и DR: два плана выживания
HA (High Availability) — быстро пережить отказ компонента без заметного простоя.
DR (Disaster Recovery) — восстановиться после катастрофы (потеря зоны/ЦОД).

Пара ключевых метрик:
• RTO (Recovery Time Objective) — за какое время восстановиться
• RPO (Recovery Point Objective) — сколько данных можно потерять во времени

Пример:
• RTO=30 минут, RPO=5 минут → архитектура должна это поддерживать (репликация + бэкапы + автоматизация).
9. Отказоустойчивость на edge
Edge‑узлы часто работают в нестабильной сети.

Практики для edge:
• локальная буферизация телеметрии (store‑and‑forward)
• деградация режима при потере облака (offline mode)
• локальные правила (policy engine) для критических решений
• контроль диска (чтобы буфер не заполнил storage)
• периодическая синхронизация и дедупликация при восстановлении связи

Идея: edge должен “не умирать” без облака, а работать в ограниченном автономном режиме.
10. Практический пример архитектуры (словами)
Пример pipeline:
Devices → Edge gateways (buffer + preprocess) → MQTT/Kafka cluster → Stream processing replicas → Time‑series DB replicas → API replicas behind load balancer.

Защитные механизмы:
• в каждом узле: health checks + autoscaling (если есть)
• в брокере: replication + retention
• в БД: primary+replicas + бэкапы
• во внешнем контуре: rate limiting + circuit breakers
11. Тестирование надёжности
Надёжность нужно проверять:
• нагрузочное тестирование (нагрузка близкая к пику)
• тесты отказов (failover): выключение инстанса, сети, диска
• chaos engineering (контролируемый “хаос”) в безопасных рамках

Минимум: регулярно проверять, что:
• failover действительно переключается
• бэкап восстанавливается
• алерты срабатывают, а runbook понятен.
12. Итоги
• Репликация повышает доступность и устойчивость к отказам.
• Балансировка + health checks обеспечивают стабильную работу при частичных сбоях.
• Перегрузка — это “скрытый отказ”; нужны rate limiting, backpressure, circuit breakers.
• HA решает локальные отказы, DR — катастрофы; важны RTO/RPO.
• Edge требует автономности: буферизация и offline‑режим.
Самопроверка (10 вопросов)
• Чем отличаются reliability, availability и fault tolerance?
• Как связаны MTBF, MTTR и availability?
• Когда синхронная репликация оправдана, а когда лучше асинхронная?
• Что делает load balancer и зачем ему readiness‑checks?
• Почему sticky sessions могут ухудшать отказоустойчивость?
• Что такое backpressure и где он применяется?
• Почему репликация не заменяет бэкап?
• Определите RTO и RPO и приведите пример требований.
• Какие особые требования к надёжности возникают на edge?
• Какие тесты вы бы провели перед запуском smart‑платформы в прод?
